[카테고리:] Bigquery 쿼리 예제

  • Bigquery로 살펴보는 GA 동질 집단 분석

    동질 집단 분석(Cohort Analysis)이란? 동질 집단 분석(Cohort Analysis)이란 특정 기간 동안 공통된 특성을 가진 사용자 그룹(동질 집단)을 정의하고, 시간에 따른 이들의 행동 변화를 분석하는 방법입니다. 예를 들어, 같은 날 앱을 설치한 사용자들, 같은 캠페인을 통해 유입된 사용자들, 같은 시기에 구매를 진행한 사용자 등을 하나의 동질 집단으로 분류하고 이들의 시간 경과에 따른 행동 변화(예: 재방문율, 재구매율,…

  • GA4 BigQuery 데이터를 활용한 코호트 분석 방법 총정리

    1. 코호트 분석이란? 코호트 분석(Cohort Analysis)은 특정한 공통점을 가진 사용자 그룹(코호트)을 시간의 흐름에 따라 관찰하고, 그 그룹의 행동 변화를 분석하는 방법입니다. 주로 사용자의 첫 방문 날짜, 회원 가입 날짜, 최초 구매일 등 특정 시점을 기준으로 그룹을 나누고, 이후 사용자의 행동 패턴(유지율, 재방문율, 재구매율 등)을 측정하는데 사용됩니다. 예를 들어, 1월에 가입한 사용자들과 2월에 가입한 사용자들의 서비스…

  • GA4 Bigquery 리텐션 분석

    리텐션 분석이란? 리텐션(Retention)은 특정 시점에 유입된 사용자가 일정 시간이 지난 후에도 다시 서비스나 사이트를 방문하는 비율을 나타내는 지표입니다. 리텐션 분석은 서비스의 지속 가능성, 사용자 경험의 질, 마케팅 전략의 효과성을 측정하는 핵심 지표로 활용됩니다. 즉, 얼마나 많은 사용자가 서비스를 재방문하는지 파악하여 고객의 충성도와 서비스의 매력을 평가할 수 있습니다. 리텐션 분석이 중요한 이유 GA4 BigQuery 데이터를 활용한…

  • 빅쿼리 윈도우 함수 LEAD와 LAG

    GA4 데이터를 사용하여 특정 페이지를 기준으로 사용자가 이전에 방문했던 페이지와 다음으로 이동한 페이지를 분석할 때는 BigQuery의 윈도우 함수(Window function)인 LEAD()와 LAG()를 사용하면 편리합니다. ✅ 1. 데이터 준비 (user_pageviews CTE) ✅ 2. 순서 및 이전/다음 페이지 지정 (ordered_pageviews CTE) 윈도우 함수 설명 ✅ 3. 특정 페이지 기준으로 데이터 필터링 ✅ 4. 최종 결과 확인 이 쿼리를…

  • AARRR 분석 방법: GA4 BigQuery 데이터 기반 실전 가이드

    AARRR(아하!)는 스타트업 및 서비스 성장 분석을 위한 대표적인 프레임워크로, **Acquisition(방문), Activation(활성화), Retention(유지), Revenue(수익), Referral(추천)**의 5단계로 나뉩니다. 이 글에서는 GA4 BigQuery 데이터를 기반으로 AARRR 분석을 수행하는 방법을 구체적인 예시와 함께 설명하겠습니다. 1. Acquisition (방문) 의미 사용자가 우리 서비스에 처음 방문하는 단계입니다. 주로 트래픽 유입과 관련된 데이터를 분석합니다. 분석 방법 SQL 예제 (BigQuery GA4 데이터 기준) 2.…

  • MySQL 사용자들을 위한 BigQuery 사용법 가이드

    1. BigQuery란? BigQuery는 Google Cloud에서 제공하는 클라우드 기반 데이터 웨어하우스로, 대용량 데이터를 빠르게 분석할 수 있는 강력한 도구입니다. 기존 MySQL을 사용해본 경험이 있다면, BigQuery는 다음과 같은 차이점을 가집니다: 2. BigQuery에서 SQL 사용법 BigQuery의 SQL 문법은 MySQL과 유사하지만 몇 가지 차이가 있습니다. 기본적인 쿼리 예제를 통해 비교해보겠습니다. 2.1 테이블 조회 및 기본 쿼리 MySQL BigQuery 차이점:…

  • 구글 빅쿼리를 활용한 데이터 분석 사례

    구글 빅쿼리(BigQuery)는 방대한 데이터를 빠르게 분석할 수 있는 강력한 도구입니다. 특히 마케팅, 광고, 사용자 행동 분석 등에 활용하면 인사이트를 도출하는 데 유용합니다. 이번 포스팅에서는 빅쿼리에서 접근할 수 있는 예시 데이터를 활용하여 다양한 분석을 수행하는 방법을 알아보겠습니다. 1. 핸드폰 기종별 광고 유입 채널 분석 분석 목표 사용자들이 어떤 핸드폰 기종을 사용하며, 주로 어떤 광고 채널을 통해…

  • GA4에서 세션 단위 소스/매체, 기본 소스/매체, 첫 사용자 소스/매체 차이 및 BigQuery 구현 방법

    GA4에서는 트래픽 소스 분석을 위해 여러 가지 소스/매체(Source/Medium) 개념을 제공합니다. 대표적인 것이 다음과 같습니다. 각각의 차이점을 이해하고 GA4 BigQuery에서 어떻게 구현되는지 살펴보겠습니다. 1. 세션 단위 소스/매체(Session Source/Medium) 개념 세션 단위 소스/매체는 사용자가 사이트를 방문할 때, 해당 세션의 트래픽 소스를 나타냅니다. 즉, 사용자가 사이트에 방문할 때 유입된 경로를 기반으로 설정됩니다. 세션이 종료되면 새 세션이 시작될 때…

  • GA4 BigQuery 데이터 분석: event_params vs user_properties 차이점 완벽 정리

    1. GA4 BigQuery에서 이벤트 데이터의 구조 GA4의 데이터를 BigQuery에서 분석하다 보면 event_params와 user_properties라는 두 개의 중요한 배열 필드를 자주 마주하게 됩니다. 이 두 필드는 GA4의 이벤트 기반 데이터에서 핵심적인 역할을 하지만, 각각 다르게 동작하기 때문에 차이를 정확히 이해하는 것이 중요합니다. 이번 글에서는 event_params와 user_properties가 무엇인지, 어떤 데이터를 담고 있으며, 어떤 점이 다른지 상세하게 설명하겠습니다. 2.…

  • GA4 BigQuery를 활용한 유입 경로별 전환율 분석

    1. 유입 경로별 전화율 분석이란 무엇인가? 유입 경로별 전환율 분석은 마케팅 활동의 성과를 측정하고 최적화하는 데 사용되는 핵심적인 분석입니다. 이 분석은 유입 경로별 성과를 평가하여 효율적인 채널에 자원을 집중시키고, 개선이 필요한 부분을 파악하는 데 도움을 줍니다. 각 유입 경로(예: 광고 캠페인, 검색 엔진, 소셜 미디어, 직접 유입 등)를 통해 방문한 사용자가 특정 목표(예: 구매, 회원가입,…

  • GA4 BigQuery를 활용한 인사이트 도출 방법

    안녕하세요! 오늘은 GA4 데이터를 BigQuery를 통해 분석하는 방법 중, 누구나 쉽게 따라 할 수 있으면서도 강력한 인사이트를 도출할 수 있는 사례를 소개하려고 합니다. 예를 들어, 상위 페이지와 이벤트를 분석하여 사용자들이 가장 자주 사용하는 기능을 파악하거나, 유저당 이벤트 발생 수를 통해 참여도를 평가할 수 있습니다. 이러한 분석은 제품 개선과 사용자 경험 향상에 중요한 역할을 합니다. 이…

  • GA4 Bigquery MAU 구하기

    안녕하세요! 오늘은 Google Cloud Platform(GCP)의 BigQuery를 사용하여 디바이스별 MAU(Monthly Active Users)를 구하는 방법을 알려드릴게요. 초보자분들도 이해할 수 있도록, 왜 이 작업이 필요한지와 쿼리의 각 단계에서 어떤 작업을 하는지 자세히 설명드리겠습니다. MAU란 무엇인가요? 먼저, MAU(Monthly Active Users)는 특정 기간 동안 서비스를 이용한 고유 사용자 수를 뜻합니다. 이 지표는 사용자의 활동 수준을 이해하고 서비스의 성장과 유지 상태를…